講座名稱:Traveling wave phenomena of FitzHugh-Nagumo equations and predator-prey systems
講座人:杜增吉 教授
講座時間:12月12日15:00-17:30
地點:騰訊會議 992-314-961
講座人介紹:
杜增吉,江蘇師范大學(xué)校長、二級教授、博士生導(dǎo)師,中國數(shù)學(xué)會奇異攝動專業(yè)委員會副理事長,江蘇省“333高層次人才”中青年科技領(lǐng)軍人才、江蘇省“青藍工程”中青年學(xué)術(shù)帶頭人。研究方向為微分方程與動力系統(tǒng)、奇異攝動理論及其應(yīng)用、生物數(shù)學(xué)等。在 J. Funct. Anal., J. Nonlinear Sci., J. Differential Equations, J. Math. Biol., Proc. AMS 和《中國科學(xué)數(shù)學(xué)》等數(shù)學(xué)期刊上發(fā)表論文80余篇。主持國家自然科學(xué)基金項目6項,參加國家自然科學(xué)基金項目重大1項。獲得省自然科學(xué)獎二等獎、省優(yōu)秀教學(xué)成果獎二等獎和省數(shù)學(xué)成就獎等,先后擔任多個數(shù)學(xué)SCI雜志編委。
講座內(nèi)容:
In this talk, we mainly investigate a coupled FitzHugh -Nagumo (FHN) equation with doubly-diffusive effect and local time delay, which was derived as a simplification of the Hodgkin-Huxley equations for nerve impulse propagation. The singular orbits are constructed by analyzing limit dynamics of the equations in the traveling wave framework by means of phase space analysis. To establish the traveling pulses for the full system, the main analysis relies on exterior differential forms, the geometric singular perturbation theory and Exchange Lemma. We also discuss a three-dimensional diffusive predator-prey system with nonlocal terms and holling II type functional response and obtain the traveling wave.
主辦單位:數(shù)學(xué)與統(tǒng)計學(xué)院