講座名稱(chēng):BOUNDED SOLUTIONS OF 1-D Q-CURVATURE EQUATION
講座人:蔣美躍 教授
講座時(shí)間:11月13日16:00-18:00
地點(diǎn):網(wǎng)安大樓121會(huì)議室
講座人介紹:
蔣美躍,北京大學(xué)數(shù)學(xué)科學(xué)學(xué)院教授,博士生導(dǎo)師。主要研究方向?yàn)榉蔷€(xiàn)性分析以及在微分方程方面的應(yīng)用,在非線(xiàn)性哈密頓系統(tǒng)周期解,辛幾何,非線(xiàn)性偏微分方程等方面取得了有影響的研究成果,在CVPDE, Ann. Inst. H. Poincare, JDE, Nonlinearity等國(guó)際權(quán)威數(shù)學(xué)期刊發(fā)表論文40多篇,多次主持國(guó)家自然科學(xué)基金面上項(xiàng)目,并承擔(dān)國(guó)家自然科學(xué)基金重點(diǎn)項(xiàng)目。
講座內(nèi)容:
In this talk we will discuss the bounded solutions of the 1-D Q-curvature equation
(1)\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ {\frac{1}{9}u}^\frac{5}{3}(u^{iv}+10u''+9u)=1.
A solution u of (1) defined on R is called bounded if there exists C>0 such that
1/C\le u(x)\le C\ x\in\mathbb{R}.
In particular, periodic and quasi-periodic solutions are bounded. We will classify all bounded solutions of (1) and discuss some of its consequences.
主辦單位:數(shù)學(xué)與統(tǒng)計(jì)學(xué)院