講座名稱:Some recent progresses on gradient methods
講座人:黃亞魁 副教授
講座時間:12月1日10:00
講座地點(diǎn):南校區(qū)信遠(yuǎn)樓二區(qū)206
講座人介紹:
黃亞魁,河北工業(yè)大學(xué)副教授、元光學(xué)者、碩士生導(dǎo)師。從西安電子科技大學(xué)獲得學(xué)士、碩士、博士學(xué)位之后,到中科院作博士后。長期從事梯度法理論及應(yīng)用的研究,在國際權(quán)威的優(yōu)化計算類和數(shù)據(jù)挖掘類期刊發(fā)表SCI論文10余篇?,F(xiàn)主持國家自然科學(xué)基金青年項目1項,曾主持中國博士后基金1項,參與多項國家自然科學(xué)基金。兼任中國運(yùn)籌學(xué)會數(shù)學(xué)規(guī)劃分會青年理事、河北省運(yùn)籌學(xué)會理事。
講座內(nèi)容:
Since its proposition in Cauchy (1847), one milestone work along the gradient method is the Barzilai-Borwein (nonmonotone) method (1988), while another significant work is the Yuan stepsize in (2006), which leads to the appearance of the efficient Dai-Yuan (monotone) gradient method (2005). In this talk, some recent progresses on gradient methods will be introduced. We will present three new stepsizes which have two-dimensional quadratic termination property. Such a property can significantly improve the performance of the gradient method. By making use of the new stepsizes and the Barzilai-Borwein stepsizes, we develop new efficient gradient methods. Numerical experiments demonstrate that our proposed methods outperform the most successful gradient methods in the literature.
主辦單位:數(shù)學(xué)與統(tǒng)計學(xué)院